Let the children play

Talking Math with Your Kids has been on something of a summer hiatus as I’ve geared up for Math On-A-Stick at the Minnesota State Fair. It has been a wild ride.

I have spent the last four days playing and talking math with kids of all ages for eleven hours a day.

My number one message coming out of this work is Let the children play.

Have a peek at our flickr photo albums to see what’s been going on. Here’s a sample (Thanks to Kaytee Reid for sharing these beautiful images).

I have been paying close attention to how children behave in this space we’ve built. I’ll just write about the plastic eggs today, but they stand in as an example for all of our activities.

When children come to the egg table at Math On-A-Stick, they know right away what to do. There are plastic eggs, and there are large empty egg cartons. The eggs go in the cartons. No one needs to give them instructions. (This is by design, by the way.)

A typical three- or four-year old will fill the cartons haphazardly. She won’t be concerned with the order she fills it, nor with the colors she uses, nor anything else. She’ll just put eggs into the carton one at a time in a seemingly random order.

But when that kid plays a second or third time, emptying and filling her egg carton—without being told to do so—she usually begins to see new possibilities. After five or ten minutes of playing eggs, this child is filling the carton in rows or columns. Or she’s making patterns such as pink-yellow, pink-yellow… Or she’s counting the eggs as she puts them in the carton. Or she’s orienting all of the eggs so they are pointy-side up.

The longer the child plays, the richer the mathematical activity she engages in. This is because the materials themselves have math built into them. The rows and columns of the egg crate; the colors and shape of the eggs; the fact that the eggs can separate into halves—all of these are mathematical features that kids notice and begin to play with as they spend time at the table.

We have seen four-year-olds spend an hour playing with the eggs.

I have observed that the children who receive the least instruction from parents, volunteers, or me are the most likely to persist. These are the children who will spend 20 minutes or more exploring the possibilities in the eggs.

The children who receive instructions from adults are least likely to persist. When a parent or volunteer says, “Make a pattern,” kids are likely to do one of two things:

  1. Make a pattern, quit, and move to something else
  2. Stop playing without making a pattern

We adults have a responsibility to let the children play. We can be there to listen to their ideas as they do. We can play in parallel by getting our own egg cartons out and filling these cartons with our own ideas.

But when we tell kids to “make a pattern” or “use the colors”, we are asking the children to fill that carton with our ideas, rather than allowing them to explore their own.

Here are some ideas children have explored in the last few days. I look forward to the next week’s worth of wonder. (Photos all shared by visitor and volunteers through Twitter and Intagram—handles are in the image titles. Many thanks to all for your generous sharing.)

Dots!

The New York Times published an article about Common Core homework this week.

As is going to be the case with a news article (in contrast to say, a post on a blog dedicated to children’s mathematical ideas), one can’t really learn any mathematics from the piece. One critique got hit twice, though—that children are being forced to draw lots of dots.

Here near the beginning of the piece:

Ms. Nelams said she did not recognize the approaches her children, ages 7 to 10, were being asked to use on math work sheets. They were frustrated by the pictures, dots and sheer number of steps needed to solve some problems.

And a bit later:

Her daughter, Anna Grace, 9, said she grew frustrated “having to draw all those little tiny dots.”

“Sometimes I had to draw 42 or 32 little dots, sometimes more.”

I have no interest in picking up political issues surrounding the Common Core State Standards on this blog.

But I do think a parent frustrated by all those dots deserves an explanation of what all those dots are for.

Before we begin, please be assured that there is absolutely no mention of dots in the Common Core. What is mentioned is the array. An array is a collection of things arranged in rows and columns. We have discussed arrays before here at Talking Math with Your Kids. They are very useful tools for representing an important meaning of multiplication—that multiplication is about some number of same sized-groups.

Arrays (with dots or other things) are useful tools for making these groups visible, either actually visible or visible in the mind.

So I asked Tabitha (7 years old) to draw some dots for me.

Me: Tabitha, [neighbor girl and best friend] wants to play. Before you go outside, can you draw that picture for me? Three rows of five dots.

Tabitha (7 years old): That’s easy! Fifteen.

She is probably counting by fives here. She completes her picture for me.

Array of dots: 3 rows of 5.

I know that neighbor girl is waiting. I decide to press my luck.

Me: What if it had been 3 rows of 6?

There is a long, thoughtful pause.

T: Eighteen!

Me: How did you know that?

She shrugs her shoulders. Now is not the time to force things. Neighbor girl is waiting. So I offer a strategy.

Me: Let me tell you how I think you might know it.

T: OK.

Me: Six is one more than five. So each row would have an extra dot. That’s 15 for the 3 rows of 5, and then 16, 17, 18.

T: [smiles] Yeah.

We share a high five and she is out the door for a morning of clubhouse shenanigans in the backyard.

Quick note: Tabitha does not let me get away with stating her strategies incorrectly. I have done this before—summarized how I think she is thinking—and when I get it wrong, she objects. I am glad about this.

So what do we learn?

This is what those dots are for. They give us something we can talk about. Without those rows and columns, the conversation is so much more abstract. We were picturing those dots in our minds as we talked about counting them.

The three rows of five she drew gave us a jumping off point for imagining the three rows of six we discussed. Three groups of five now has a relationship for her to three groups of six.

More importantly, the strategy of finding new facts based on old facts (here that 3 groups of 6 is 18 based on knowing that 3 groups of 5 is 15), has been introduced explicitly. It is something we will talk about in the future, and something she will know to consider.

Without the array, it is not at all clear to me that she would have been able to know what 3 groups of 6 is. She could have drawn 3 unorganized groups of 6, I suppose, and counted them individually. But this is a much less sophisticated strategy, and she is ready for more than counting individual objects.

Starting the conversation

Many children do not naturally see rows and columns. Given an array, they may haphazardly count the objects around the edge, then in the middle. This often leads to double counting and skipping things.

But even children who are very good at keeping track of their haphazard counting—and who can get correct counts every time—may not see the row and column structure of an array.

So put 15 pennies in 3 rows of 5. Have your child count them and notice whether she counts in rows and columns, or whether she counts in some less structured way. Model the counting yourself so that she can see an example of the rows and columns at work. Don’t worry if she doesn’t see the structure yet, but do make a note to do more of this kind of counting in the future—seeing the structure of an array is an important stepping stone to multiplication and to the measurement of area and perimeter.

Then have your child put things in rows and columns.

Or just have her draw dots.

 

Twister

Tabitha received a Twister game for her recent birthday (7 years old!) She enjoys a version of the game in which one person spins and the other follows instructions until, as Tabitha puts it with much delight, the cookie crumbles.

The players switch roles for the next round. No score is kept.

She wants to play a round one recent Sunday evening. I have been writing, so I have her set it up in the kitchen while I finish up.

She comes back to me with questions.

Tabitha (7 years old): Daddy! What’s six plus six plus six plus six?

Me: Wait. How many sixes?

T: Four.

Me: Twenty-four.

T: Yes! I counted them right!

Me: Huh?

She takes me into the kitchen to show me the Twister board.

twister

T: See? One, two, three, four, five, six.

She is counting the green dots in one row.

T: Then one, two, three, four

She is counting the rows.

Me: So four sixes is 24. Nice. Can I show you something cool? It’s also six fours. See? One, two, three, four.

I am counting the dots in one column—each a different color.

Me: Then one, two, three, four, five, six.

I am counting the columns.

Me: So four sixes and six fours are the same.

T: Like the dominoes.

She is referring to a recent homework assignment in which dominoes were used to demonstrate that 6+4 is the same as 4+6, and that this is true as a general principle about addition.

So what do we learn?

Rows and columns are fun, fun, fun.

Malke Rosenfeld of Math in Your Feet reminds me regularly that children love to play in structured space. She uses blue tape on the floor for her math/dance lessons and has noticed that children love to play freely in and around the spaces created by the tape (seriously: click that link, have a read and then go buy some painter’s tape!). The same thing is true for the Twister board. It creates a structured space for Tabitha to explore at a scale that allows her to use her whole body. That’s a good time for a seven-year-old.

But children don’t always notice the rows and columns in an arrangement like the Twister board. They need to learn to notice it. This is an important step on the path to learning multiplication. The fact that our conversation began with “What is 6+6+6+6 ?” tells me that Tabitha notices the rows and the columns. She knows that the answer to 6+6+6+6 should be the same as her count. By introducing the language of “four sixes” and “six fours”, I am trying to help her notice the multiplication structure underlying her ideas.

Starting the conversation

Arrange things in rows and columns. When you do, the whole thing is called an array.

Point out arrays in the world. Count the number in each row together, and count the number of rows. Notice together whether the numbers switch if you count the number in each column and count the columns. Does eight rows of six become six columns of eight? Does this happen for all numbers?

Here are some of my favorite arrays.