Time Zones

Griffin is 13 years old and seems to be coming to the end of that early adolescent phase of rejecting everything those around him hold dear. Engaging him in math talk has taken more finesse in this phase of life.

Mostly it has involved giving him responsibility for things that involve making calculations. When he was little, we could talk collaboratively about how many tangerines are in a 3 pound bag and discuss whether this would be enough to last the family a week. Now I tend to put him in charge of getting enough tangerines to last us a week. He still has to do the same thinking, but he’s in charge.

This is not enough tangerines for a week at our house. (By the way, which is more?)

From time to time, though, we still put a mathematical idea up for discussion, and as he ages through adolescence, these conversations happen a bit more often. Yet he is still wary. Nevertheless, I persist.

We have been watching the Olympics, and we have wondered about which events are happening as we watch them, and which ones happened earlier (yet somehow happened “tomorrow”!)

Griffin was thinking about time zones, and about their implications for traveling as we wrapped up an evening this week, and made preparations for the next day.

Griffin (13 years old): So they’re 14 hours ahead of us?

Me: Yes.

G: You’d get a lot of jet lag, huh?

Me: Yeah. Maybe not as much as it looks like, though. Maybe it’s just 10 hours’ worth, going the other way.

There is a bit of a puzzled silence.

G: Wait. Really?

Me: Yeah. Well, plus a day.

G: Wait. Is this one of your mathy talks?

Me: Absolutely not.

If you’re reading this, Griff, I’m sorry (sort of). I am totally busted.

Me: Yeah. 14 hours ahead is the same as 10 hours behind, right? Just going the other way.

G: But the day would be wrong.

Me: Yeah. You have to add a day, but you don’t get jet lag because the day changes, you get jet lag because the time of day does.

G: Maybe.

He returns to packing his lunch. I go back to whatever I was doing. Putting turtles in boxes, probably.

A couple minutes later…

G: So the east coast is 23 hours behind us?

So What Do We Learn?

Keep trying. Opportunities to talk about numbers, shapes, and patterns present themselves. Seize them and do not stop. Ask questions, think out loud. Don’t worry about whether any particular conversation goes anywhere. Just keep at it.

Cold snap

Tabitha (9 years old) is keenly attuned to the temperatures these days, as subzero air temperatures or wind chills mean indoor recess. Being a child of great physical energy, indoor recess is not ideal.


We have an indoor/outdoor thermometer on our kitchen table, which she checks several times a day. Yesterday evening before doing the dishes together, she checks the thermometer.

Tabitha (9 years old): It’s 1 below.

Me: What was it this morning? Five degrees?

T: Four

Me: Crazy. So it’s colder now.

T: Yeah.

Me: How much colder?

T: Five below

Me: How do you know? Is it because 4 + 1, or did you count?

T: Neither.

Me: Oh! Now I have to hear it!

T: Well…Four minus four is zero, then it’s one less, so it’s five.

Me: So one more than four less…er…one less than four….no….

[we laugh]

T: It’s one more because it’s one less!

So what do we learn?

This conversation reminded me very much of a game I used to play with Griffin (who is now 12 years old) on cold winter mornings. In both cases, the children naturally developed a strategy using zero as a stopping point in making comparisons.

The thing I especially love about this story is that Tabitha expresses a complicated relationship that is crystal clear to her: “One more because it’s one less.” Expanded out, she’s saying that “The difference between -1 and 4 is bigger than the difference between 0 and 4—the difference is bigger by 1 because -1 is one unit further from 4 than 0 is.”

She can express this complicated idea because it is her own.

If I tried to tell her that this is how subtraction with negative numbers works, she would definitely pronounce my ideas confusing—whether they were expressed in the language of 9-year-olds or the language of mathematicians.

I cannot tell her these things and have them be meaningful. What I can do is ask how much colder it is now than it was this morning.

Starting the conversation

Move to Minnesota.

I’m kidding.

You can buy a Celsius thermometer, though.

You can make comparisons more generally, both asking your child how she knows, and talking about how you think about it. How many more full cups in the muffin tin than empty ones? How many more fork than spoons? How many more adults on the bus than children (or vice versa)? How many more quarters than dimes in the change bowl?

How Many? An invitation to #unitchat

Make Math Playful is an unofficial slogan here at Talking Math with Your Kids. An important part of play is that there is not one right answer. Through Which One Doesn’t BelongI showed a way to make geometry playful. Now with How Many? I’m working on a way of making counting playful.

The idea has grown out of the TED-Ed video I did a while back, and the more I play with it, the more I see it in the world around me. My goal is to help parents, teachers, and especially children see it too.

Most counting tasks tell you what to count. Whether it’s Sandra Boynton’s adorable board book Doggies, or Greg Tang’s more sophisticated The Grapes of Math, the authors tell you what to count—or even count it for you.

How Many? is a counting book that leaves possibilities open and that seeks to create conversations. Creativity is encouraged. Surprises abound.

The premise is simple. Every page asks How Many? but doesn’t specify what to count. Each image has many possibilities.

An example. How many?


Maybe you say two. Two shoes. Or one because there is one pair of shoes, or one shoebox. Maybe you count shoelaces or aglets or eyelets (2, 4, and 20, respectively). The longer you linger, the more possibilities you’ll see.

It’s important to say what you’re counting, and noticing new things to count will lead to new quantities.

Another example. How many?


A few possibilities: 1, 2, 3, 4, 6, 12, 24, 36. What unit is each counting? Maybe you see fractions, too. 2/3, 4/6, 3/4, 1/12….others? What is the whole for each fraction? The number 3 shows up more than once—there are three unsliced pizzas, and there are also three types of pizza. Are there other numbers that count multiple units?

All of this leads to two specific invitations.

Let me come talk with your students.

(It turns out my schedule filled very quickly, and I’m no longer seeking new classrooms to visit right now—thanks to everyone for your support!)

If you are within an hour of the city of Saint Paul and work with children somewhere in the first through fourth grades, then invite me to come test drive some fun and challenging counting tasks with your students. I have set aside November 17 and 18 and hope to get into a variety of classrooms on those two days. Get in touch through the About/Contact page on this blog.

Join the fun on Twitter.

I’ve been using, and will continue to use and monitor, the hashtag #unitchat, for prompts and discussion of fun and ambiguous counting challenges. Post your thoughts, your own images, the observations of your own children or students, and I’ll do likewise.

How Many? A counting book will be published by Stenhouse late next year.

On helping children to love math

Some version of the following comes through my email Inbox every so often.

My daughter does not like maths. How can I ignite the passion for maths? She’s 8 and I feel she’s got to learn the importance of maths but how can I do it?  A teacher told her Maths is not for everyone and she believes it. Help!

Here is a version of my standard response.

Your story strikes close to my heart.

You may well know that girls are much more likely to get these kinds of messages from teachers than boys are, and they are much more likely to internalize these messages, as their teachers are much more likely to be same-gender role models.

It is all heartbreaking.

And I’ve seen these forces first-hand this year with my 9-year-old daughter. Her teacher said to her in a parent-teacher conference, “Your mind is better with words than with numbers, isn’t it?”

This, despite extensive evidence that she is a super creative mathematical thinker. A significant fraction of that evidence is documented on my blog, Talking Math with Your Kids.

With my own children, I have taken the perspective that “loving math” or even “appreciating its importance” may not be reasonable goals. Instead, being able to see math in their lives, and becoming competent mathematicians is.

Of course I would love for my children to love math, just as I would love for them to love reading. But I can’t enforce those emotions. What I can do is infuse my children’s everyday world with shapes, patterns, and numbers just as I infuse their world with words and stories.

This blog is full of concrete examples of opportunities for this. The post about hot chocolate is probably the simplest and clearest example of how parents can make simple changes to support their kids’ developing mathematical minds.

I would also recommend spending some time reading the research posts. There’s a lot of useful and interesting research work going on in math education right now, especially as it pertains to elementary-aged children, parents, and math.

Please don’t hesitate to reach out if there is anything further I can do to support you and your daughter.

I wish you both the best!


Tessalation: A great new book

Tessalation is a terrific new picture book by Emily Grosvenor. The story involves a little girl whose mother needs a bit of peace and quiet, so sends her outside to play. While outside, Tessa (get it?) notices shapes fitting together without gaps everywhere she looks.

I helped sponsor Tessalation on Kickstarter this spring, and our hard copies arrived last week. Naturally Tabitha (9 years old) and I read it together right away.

Here are some of the things Tabitha, Griffin (11 years old) and I noticed and discussed while reading it, and afterwards:

  • The turtles are delightful.
  • While they are somewhat different turtles from the ones we’ve played with around the house for the last year, they have an important characteristic in common—two noses and two tails come together in both tessellations.
  • There are tessellating leaves that look an awful lot like some shapes I’ve made and we’ve played with a number of times. We saw kites and hexagons and triangles in the leaves just as we have in the pink quadrilaterals below.
  • We wondered whether this object counts as a tessellation. (It’s not from the book, but Tessa set a great example for us to notice and ask about tessellations in our world.)

2016-07-11 17.32.02

All in all, Tessalation is perfectly aligned with the Talking Math with Your Kids spirit. It creates a richly structured and playful space for parents and children to notice things and to converse. The language is fun. The images are beautiful. Tabitha and I highly recommend it.

Quick notes: Tessalation will be a component of August’s Summer of Math box. It’s not too late to sign up! Also, we’ll soon have a Tessalation/Tiling Turtles combo pack available. You can order the book right now from Waldorf Books, and e-books from Amazon.


Ceiling fan arithmetic

Summer has arrived in Minnesota, and that means we alternate between warm days where we open the windows and run the ceiling fan, and hot days where we close everything up and run the air conditioning (a luxury, btw, that our 1928-built home only got about five years back).


Not our ceiling fan.
Image credit: Brian Snelson (CC-BY 2.0)

Tabitha is naturally curious about how the ceiling fan works. In case you don’t have experience with them, or yours works differently from ours, here are the basics: There is a switch on the wall—just like a light switch—that powers the fan. Then there is a chain hanging from the fan itself that affects the speed. There are four settings controlled by the chain—High, Medium, Low, and Off.

By the time this conversation takes place, Tabitha and I have already explored a variety of ceiling fan questions, such as If the fan is off, should you pull the chain to turn it on, or head over to the light switch? and How many times can I pull the chain before my parents tell me to stop playing with the fan?

On this day, I ask Tabitha to flip the wall switch to turn on the fan, which she does. She then starts to stand up on the couch to reach the chain. I ask why.

Tabitha (9 years old): I want to see if it’s on high.

Me: But how will you know? If you pull the chain it will slow down, but that’s what it always does. So how will you know whether it was on high to begin with?

T: Well, it doesn’t always slow down, otherwise how would it ever be on high?

So What Do We Learn?

There is some very deep math going on here.

Tabitha and I are playing with properties of modular arithmetic, but she (and you) don’t need to know the specifics. Things that go in cycles are all examples of this kind of math.

The classic example is time. You could say that later times have bigger numbers. 4 is later than 3; 12 is later than 9. This is just like my claim that every pull of the chain slows down the fan. Both of these claims are only sort of true. Three in the afternoon is later than 11 in the morning, despite having a smaller number. If the fan is on low and you pull the chain twice, it’ll be on high.

People study these things in great depth in the field of Modern Algebra, and the ideas are useful in all sorts of places.

Starting the Conversation

Play with a ceiling fan. Talk about staying up all night. Notice together that weird things happen when the fan is in the off position, and at midnight and noon. Wonder aloud whether 12 o’clock is like zero (and if not, what is?)

Play around with basic facts in this ceiling fan environment. If it’s on high, how many pulls to turn it off? If it’s on low, how many to get it to medium? I just pulled the chain three times and now it’s on low—where was it before? Etc. Challenge the child; have the child challenge you.

Stay cool!

The Summer of Math

Hey parents! Listen closely. Do you hear that? It’s the sound of school letting out for the summer!

You’ve got your summer camps planned, your squirt guns at the ready, and you’re all set to hit the library as many times as needed to keep your kids reading all summer long.

Now you need a plan to keep their math minds active.

At Talking Math with Your Kids, we’ve got you covered.

Announcing The Summer of Math.

Photo May 21, 12 18 38 PM

A small sample of the fun to be had this summer!

Here’s how it works. You can head over to the Talking Math with Your Kids store, pay for a subscription to The Summer of Math, and all summer long we’ll ship you awesome, fun stuff that will keep you and your 5—10 year old busy playing and talking math.

You’ll color, count, make patterns, designs and shapes. You’ll read together, draw, and challenge yourselves. You’ll notice. You’ll wonder. You’ll play. And when school starts back up in the fall, your kids will remember this as the best, mathiest summer ever.

The details

Each month June—September, we’ll ship you a box that contains a bunch of great stuff—at least one book, at least one related set of mathy things to play with, and at least one special surprise. For example, in June you’ll get one beautiful math coloring book, one terrific activity book, all the supplies you need for both of these, a set of spiraling pentagons (so you can make your own awesome designs like those in the coloring book), and a little something extra we cannot yet divulge.

Plus a newsletter where we’ll share additional ideas, questions, cool math stuff we’ve been doing, and reports you send us of the mathy fun you’ve had this summer.

We’ll ship the first week of each month. One week before we ship it out, we’ll send you an email letting you know exactly what’s coming your way (except for the surprise—that’s always a surprise!) You can let us know if you need to add, delete, or swap anything out. We can easily credit you for things you already have (but it’s not likely you’ll already have much of what we’ve got planned), or substitute something new and awesome for it.

We’ll have a Facebook page where we’ll share our mathy adventures and encourage you to share yours.

What are you waiting for? Click on through and join us for The Summer of Math!